

SUBWATERSHED TOOLKITS MIDDLE ENGLISH RIVER

HUC-12: 070802090302

TABLE OF CONTENTS

Section 1: Planning Process	Page 3
Section 2: 2018 Conservation Survey	Page 5
Section 3: Water Quality Monitoring	Page 7
Section 4: Soil Erosion	Page 9
Section 5: Agricultural Conservation Planning Framework	Page 12
Section 6: Urban Assessment	Page 14
Section 7: Hazard Mitigation	Page 16
Section 8: Action Plan	Page 18
Acronyms, Acknowledgements, & Contact Information	Page 21

Funding for development and printing of this plan was provided by the lowa Watershed Approach.

The lowa Watershed Approach is a collaborative program that brings together local, state, federal, and private organizations to work together to address factors that contribute to floods and nutrient flows. Iowans will enjoy improvements in quality of life and health resulting from upstream watershed investments tied to community resilience activities. This adaptive model, supported by U.S. Housing and Urban Development (HUD) dollars, will leverage the principles of Iowa's innovative Nutrient Reduction Strategy to make our communities more resilient to flooding and help improve water quality.

SECTION 1: PLANNING PROCESS

The English River Watershed (ERW) completed "Phase 1" comprehensive watershed planning in 2015. The goal of this project was to take an inventory of the physical environment, complete hydrologic modeling on the basin scale (HUC-8), collect baseline water quality data, engage landowners in the planning process, and formulate watershed improvement recommendations based on data public input. The entire plan, titled the *English River Watershed Improvement and Resiliency Plan*, can be found on the English River Watershed website.

PHASE 2 KEY QUESTIONS & OUTCOMES

Beginning in Fall 2017, the English River Watershed began the "Phase 2" subwatershed planning process, which was completed in December of 2018. The goal of this phase was to discover priority areas on the subwatershed level (HUC-12) for targeted implementation of cost-share funds. The plans are intended to introduce many of the tools and analyses that can be used by municipalities, SWCDs, the WMA, and other organizations when considering watershed improvement projects.

The ERW consists of 20 HUC-12 subwatersheds. A total of 14 subwated plans were developed in accordance with the criteria established by the project funding source. Table 1 shown below highlights the differences between the 9-step planning process in Phases 1 and 2.

Table 1. The 9-Step Planning Process for Phase 1 and Phase 2. Source: ERW

Planning Step	Phase 1 Outcomes	Phase 2 Key Questions	Phase 2 Outcomes
1. Engage the Public	Determined of the community's concerns and perceived threats to water quality and quantity.	What concerns are specific to the HUC-12 subwatershed?	Completed a mail survey to all 14 subwatersheds and gained input at various meetings and events.
2. Inventory Resources	Determined the broad land uses, environmental characteristics, and history of the watershed.	What data exists on the subwatershed level and can be analyzed in comparison between subwatersheds?	Compiled data on soil erosion, flooding and social risks, water quality, and detailed urban land uses.
3. Develop Problem Statements	Determined the broad causes and sources of impairments in the watershed.	What tools can be developed to provide support for watershed entities seeking grant or cost share funding?	Designed a "toolbox" of resources for watershed entities that address problems specific to each subwatershed.
4. Identify Target Conditions	Identified recommendations for HUC-8 scale watershed improvements to water quality and quantity.	What are the HUC-12 level specific water quality and quantity conditions?	Analyzed historical erosion data, developed erosion potential maps, and completed 2 seasons of water quality monitoring.
5. Develop Restoration Targets	Determined priority issues throughout the watershed through public participation.	What is the potential for conservation practices (amount or type)?	Completed the Agricultural Conservation Planning Framework (ACPF) and urban modeling.
6. Evaluate Alternatives	Prepared BMP benefits table with associated reductions in contaminants or flood volumes.	What do the recommended practices achieve?	Matrix for cost/benefits of urban/ rural practices and risk analysis based on community assets.
7. Prepare the Implementation Plan	Assigned responsibility to the WMA for continued research and pursuit of cost share funding.	Who is responsible for implementing programs? Who can provide technical assistance?	Matrix for responsible parties, funding opportunities, and resources provided by ERW.
8. Implement the Plan	Physical and digital copies of the plan were delivered to watershed entities.	How will the results and recommendations of the plan be communicated to the public?	Physical and digital copies of the plan delivered to watershed entities and interactive webmaps.
9. Evaluate the Plan	Determined a routine for updating the plan and monitoring implementation goals.	How will practices be measured and who will update the plan?	Developed a monitoring plan, including metrics for success.

ABOUT THE SUBWATERSHED

The Middle English River subwatershed is located in the central region of the ERW. It overlaps 2 counties (lowa and Poweshiek) and a portion of the City of Millersburg.

It was determined in Phase 1 planning that the primary resource concern in the subwatershed is phosphorus and sediment contamination. Additionally, the Middle English River subwatershed ranked high for flooding risks and nitrogen pollution. Watershed stakeholders also expressed their desire for routine water quality monitoring in all subwatersheds.

Resource concerns in the Middle English River subwatershed aided in the ERW's decision to designate the subwatershed as one of five priority areas for implementation of best management practices (BMPs) through cost share partnerships with local landowners. Funding for this program is available through the lowa Watershed Approach (IWA).

Figure 1 is a location map of the subwatershed. The subwatershed encompasses 29,845 acres (46.6 square miles) of land, which is predominately row crops (corn and soybeans). Gritter Creek stretches approximately 25.5 miles through the subwatershed in west to east direction, eventually outletting into the North English River.

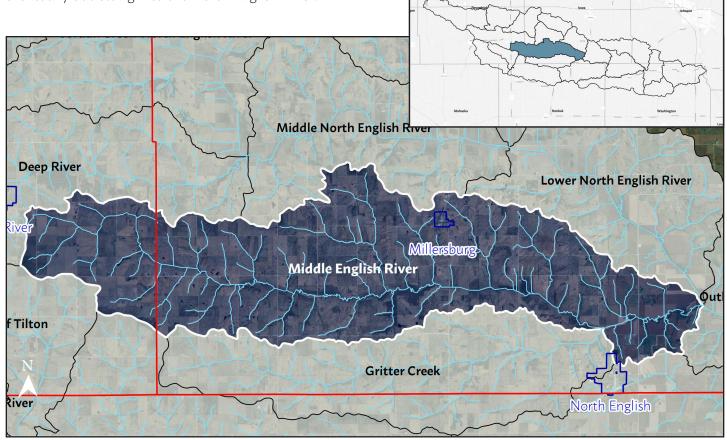


Figure 1. Middle English River Subwatershed Boundary Map. Source: ERW

SECTION 2: 2018 CONSERVATION SURVEY

The English River Watershed completed the "2018 Conservation Survey" in the spring of 2018. The survey builds upon the landowner survey completed in Phase 1 and seeks to better understand the barriers farmers face when considering adoption of conservation practices.

A random sample of agricultural properties of at least 10 acres in size in the watershed were sampled via mail. The sample totaled 986 properties in Iowa, Poweshiek, Johnson, and Keokuk Counties. 264 surveys were completed, which is a response rate of 26.8 percent.

Among the entire sample, the majority of respondents indentified in the age group of 55 - 64 years old (27.7%). Table 2 shows the breakdown of farm size in the survey. Table 3 shows the breakdown of type of farm operations in the survey.

CONSERVATION ADOPTION AND WILLINGNESS

The survey first sought to understand which conservation practices are currently being implemented and which practices, dependent on availability of cost-share funding, are in demand. This information allows conservation organizations to provide more relevant information to landowners. Figure 2 shows the number of respondents that have tried a specific practice (green bars) and the number of respondents who would try specific practices with the availability of 75 percent cost-share (blue bars).

Table 2. Farm size in survey sample. Source: ERW

Farm Size	% of Respondents
Less than 25 acres	7%
25 - 75 acres	14%
75 - 250 acres	32%
250 - 500 acres	21%
500 - 1,000 acres	13%
More than 1,000 acre	13%

Table 3. Type of farm operation in survey sample. Source: ERW

Crops/Livestock	Number of Respondents / % of Sample
Corn	211 / (35.2%)
Soybeans	210 / (35.1%)
Hogs	30 / (5.0%)
Beef Cattle	68 / (11.4%)
Dairy Cattle	11 / (1.8%)
Other	69 / (11.5%)

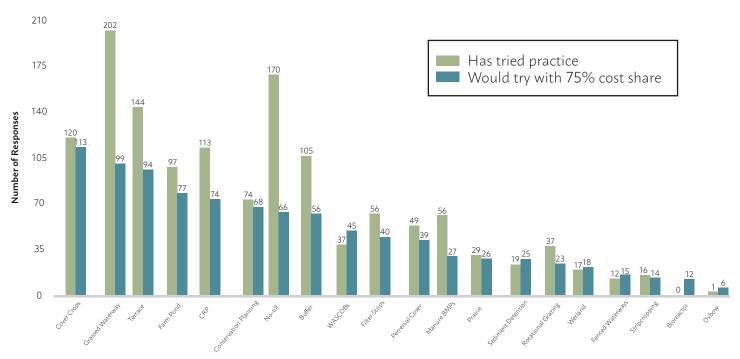


Figure 2. Conservation adoption and willingness to adopt conservation practices with cost share among survey sample. Source: ERW

CONSERVATION ORGANIZATIONS

Farmers face a plethora of options when seeking information about conservation. This situation can lead to confusion among various conservation organizations and produce conflicting information. Table 4 shows survey respondent's familiarity with the purpose of each group and how respondents are interacting with various groups in lowa.

Table 4. Familiarity with organizational purposes and groups distributing conservation information among survey sample. Source: ERW

Organization	Mean Familiarity with Mission or Purpose (5 = Very Familiar)	Distribution of Conservation Information (Total # of Responses)			
Natural Resource Conservation Service	3.21	140			
Iowa Department of Natural Resources	3.16	67			
County Conservation	2.99	71			
Iowa State University Extension and Outreach	2.81	83			
Iowa Department of Agriculture and Land Stewardship	2.70	57			
Soil and Water Conservation District	2.67	84			
English River Watershed	2.40	61			
Iowa Flood Center	1.49	N/A			
Crop Advisor	N/A	22			
Growers or Producers Associations	N/A	33			
Fertilizer or Agricultural Products Dealer	N/A	35			

BARRIERS TO CONSERVATION

Finally, the survey attempted to uncover barriers to conservation according to farmers in the watershed. Figure 5 displays the respondent's level of agreement with various statements related to conservation and Table 5 shows some of the barriers that exist for farmers considering adopting conservation practices. Data specific to lowa and Keokuk Counties can be found in the full report at the link below.

Figure 5. Mean level of agreement among conservation statements. Source: ERW

Table 5. Top barriers to conservation identified by survey sample. *Source: ERW*

Rank	Barrier	# of Responses
1	Cost of practice	142
2	Too many "strings attached" with state/federal programs	116
3	Loss of productive land / impact on yields	74
4	Uncertainty of crop values year to year	52
5	Maintenance plans are too strict or confusing	38
6	Unsure of actual environmental benefits	28
7	Other	14

SECTION 3: WATER QUALITY MONITORING

There are 20 subwatersheds of the English River Watershed (ERW) and a sampling site monitored by watershed staff and volunteers located at or near the outlet of each subwatershed. Site 10 is located on the Middle English River at the L Ave bridge, just north of North English in Iowa County. It was sampled approximately every 2 weeks between June 7 through December 18 in 2017, and between March 23 through October 30 in 2018. The Iowa Department of Natural Resources provides data from sampling at the "English River at Riverside" location as well as data from sampling in watersheds across the state (6,856 samples collected statewide between 2008 – 2018); these data are included for comparative purposes.

MONITORING RESULTS

Of the 20 sampling locations across the ERW, Site 10 ranked 19th in average N+N values for both 2017 and 2018.

Of the 20 sampling locations across the ERW, Site 10 ranked 2nd highest in average E. Coli values for 2017, and 5th in 2018.

Of the 20 sampling locations across the ERW, Site 10 ranked 10th in average Ortho-phosphate values for 2017, and 18th lowest in 2018.

Of the 20 sampling locations across the ERW, Site 10 ranked 4th in average Total Phosphorus values in 2017, and 13th in 2018.

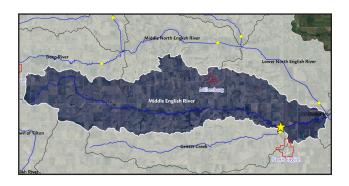


Figure 4. Water quality monitoring location for Middle English River subwatershed. *Source: ERW*

Table 6. Nitrate+Nitrite as N (mg/L)
The EPA drinking water standard for Nitrate + Nitrite as N is 10ppm (parts per million, or mg/L).

Site	Range high value/ low value (ppm)	Median (ppm)	Average (ppm)	% Samples exceeding EPA standard
2017 - Site 10	0 – 10.0	2.8	2.7	0%
2018 - Site 10	0 - 4.2	2.8	2.7	0%
2017 – English River at Riverside	0.1 – 9.8	4.2	3.8	0%
2018 – English River at Riverside	0.1 – 5.6	2.2	2.7	0%
2008 – 2018 – Statewide	0 – 30.0	5.8	-	-

Table 7. e.Coli
The State of Iowa beach advisory/health standard for E. Coli is 235 Colony Forming Units (CFUs) per 100mL.

Site	Range high val- ue/low value (CFUs/100mL)	Median (CFUs/ 100mL)	Average (CFU0s/ 100mL)	% Samples exceeding standard
2017 – Site 10	74 – 24,000	1,045	2,920	92.9%
2018 - Site 10	63 - 24,000	660	2,811	82.4%
2017 – English River at Riverside	74 – 20,000	375	1,996	75%
2018 – English River at Riverside	10 – 6,500	110	792	17%
2008 – 2018 – Statewide	0 - 820,000	160	-	-

Table 8. Ortho-Phosphate

Currently, there are no standards set for Ortho-phosphate values in freshwater streams.

Site	Range high value/ low value (ppm)	Median (ppm)	Average (ppm)	% Samples exceeding standard
2017 – Site 10	0 - 0.08	0.04	0.03	-
2018 - Site 10	0.02 – 0.10	0.04	0.05	-
2017 – English River at Riverside	0.02 - 0.12	0.06	0.07	-
2018 – English River at Riverside	0.02 - 0.29	0.06	0.08	-
2008 – 2018 – Statewide	0 – 5.90	0.08	-	-

Table 9. Total Phosphorus

The EPA standard for Total Phosphorus as P is 0.075ppm (parts per million or mg/L) for freshwater streams.

Site	Range high value/ low value (ppm)	Median (ppm)	Average (ppm)	% Samples exceeding EPA standard
2017 – Site 10	0.12 - 0.40	0.16	0.20	100%
2018 - Site 10	0.06 – 0.51	0.14	0.17	88.2%
2017 – English River at Riverside	0.10 – 1.00	0.17	0.27	100%
2018 – English River at Riverside	0.12 – 1.50	0.20	0.37	100%
2008 – 2018 – Statewide	0 - 9.20	0.20	-	-

SECTION 4: SOIL EROSION

The ERW Resiliency and Improvement Plan seeks to reduce soil loss from farm fields, urban areas, and construction sites through best management practices that promote soil retention and stability. In order to target specific areas of concern where practices would be most beneficial, a deeper understanding of soil erosion on the subwatershed level is necessary. Data presented in the following analysis was provided by the Iowa State University Daily Erosion Project (DEP), at https://dailyerosion.org/map. The illustration below shows what is modeled by the DEP in comparison to visible gulley erosion. The illustration highlights that the DEP only models sheet and rill erosion; erosion from other sources such as classic gullies or streambanks is not included.

RUNOFF

One method for estimating erosion is to calculate the average amount of water that left the hillslopes by above ground transport. Figure 6 shown below portrays monthly variation in average runoff in the Middle English River Flooding in April of 2013 generated over 11 times the total runoff than Middle English River's average monthly runff of 0.51 inches.

Subwatersheds are identified by the last 3 digits of their 12-digit hydrologic unit code (HUC) in Table 10. For example, Middle English River's HUC is "070802090302"; see 302 Table 10 below.

Table 10. Estimated Average Monthly	Runoff and Average Monthly	Precipitation (2008-2016). Source: DEP

	405	404	402	302	401	501	403	502	301	406	408	407	503	504
Average Monthly Runoff (in)	0.53	0.53	0.52	0.51	0.51	0.51	0.50	0.50	0.50	0.48	0.48	0.48	0.46	0.43
Average Monthly Precipitation (in)	3.26	3.23	3.17	3.28	3.12	3.23	3.21	3.24	3.29	3.25	3.27	3.33	3.26	3.24

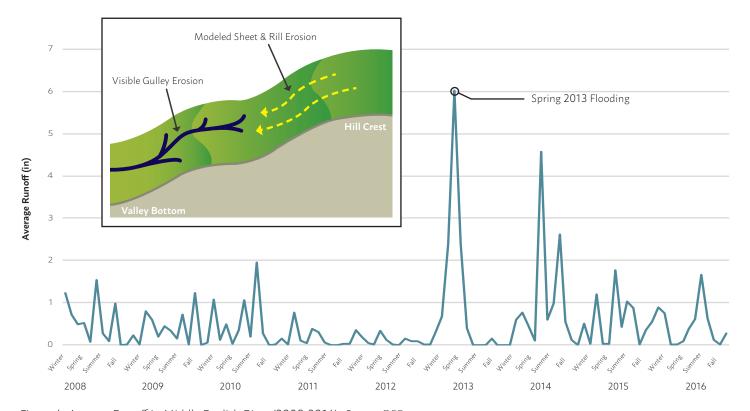


Figure 6. Average Runoff in Middle English River (2008-2016). Source: DEP

SOIL DETACHMENT & DELIVERY

Detachment is the amount of soil that is disturbed on the hillslopes during various rain events. For this analysis, historic flooding in 2013 was utilized for comparison among subwatersheds regarding their ability to hold soil. The Middle English River subwatershed experienced an average of 6.90 tons per acre of disturbed soil during the given flood period. By comparison, the average soil detachment among the 8 subwatersheds was 6.47 tons per acre. This data is shown below (Figure 7) as light green bars.

Soil delivery is the average amount of soil transported to the bottom of hillslopes. Blue bars in the bar graph shown below (Figure 7) display average soil delivery from 2008 to 2016. The Middle English River subwatershed ranks high among all subwatersheds for soil delivery at 8.74 tons per acre per year. It is estimated that erosion rates in lowa are about 5.1 tons per acre per year (Mike Duffy, 2012). Based on this average, soil loss in Gritter Creek is above the state average and above the average (7.00 tons per acre per year) of all subwatersheds in the English River Watershed.

All data presented in this section is publicly available via an interactive webmap hosted by the DEP. Visit the link below to access soil erosion data specifically for the Middle English River.

Source: Duffy, Mike. Value of Soil Erosion to the Land Owner, August 2012. https://www.extension.iastate.edu/agdm/crops/pdf/a1-75.pdf

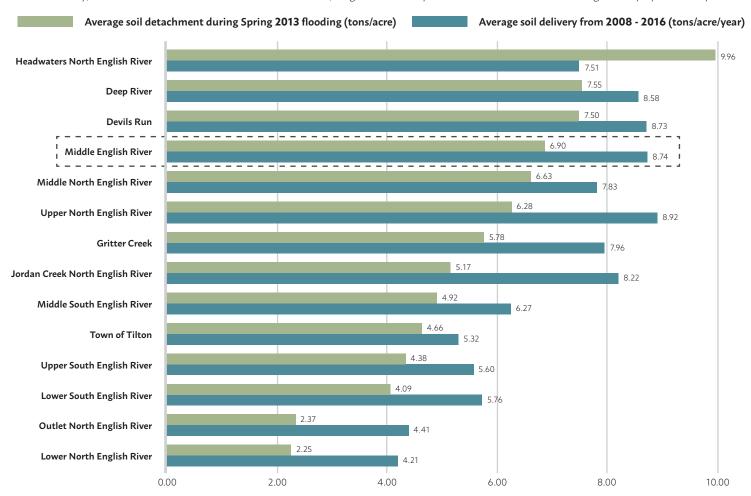


Figure 7. Soil Delivery and Detachment in Middle English River (2008-2016). Source: DEP

VIEW DAILY EROSION PROJECT FOR MIDDLE ENGLISH RIVER:

https://bit.ly/2NZVLqc

SHEET AND RILL EROSION & SEDIMENT DELIVERY POTENTIAL

Four priority subwatersheds (Gritter Creek, Middle English River, Headwaters North English, and the Middle North English River) were selected for implementation of BMPs through the IWA project through a cost-share program. As a result, these subwatersheds were subject to a greater level of research and planning including a detailed land use assessment completed in 2017 for use in the Revised Universal Soil Loss Equation (RUSLE) analysis, which estimated sheet and rill erosion (Figure 8) and sediment delivery (Figure 9). The lowa Department of Natural Resources (IDNR) estimates sheet and rill erosion in the subwatershed is 192,017 tons per year. The IDNR also estimates that 35,447 tons of sediment is delivered to waterways per year.

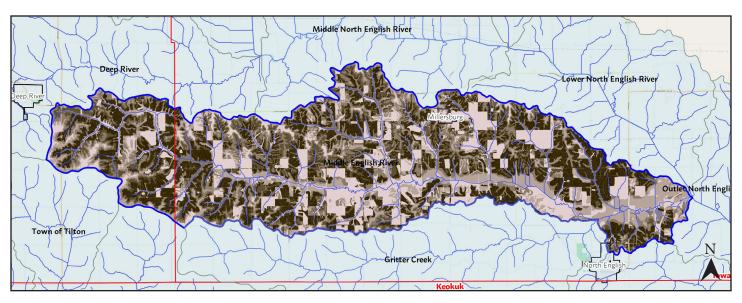


Figure 8. Estimated Sheet and Rill Erosion for the Middle English River Subwatershed, 2017. Source: Iowa DNR

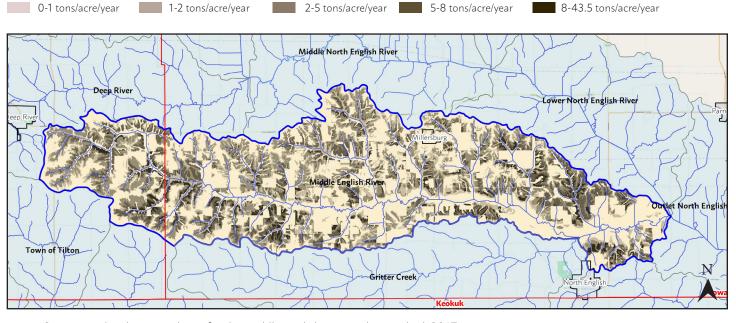


Figure 9. Estimated Sediment Delivery for the Middle English River Subwatershed, 2017. Source: Iowa DNR

0-0.5 tons/acre/year 0.5-1 tons/acre/year 1-2 tons/acre/year 2-4 tons/acre/year 4-6.21 tons/acre/year

VIEW SOIL EROSION WEBMAPS FOR MIDDLE ENGLISH RIVER:

http://www.englishriverwma.org/erosion

SECTION 5: AGRICULTURAL CONSERVATION PLANNING FRAMEWORK

The Agricultural Conservation Planning Framework (ACPF) is a digital toolbox watershed planning and research. Utilizing a geographic information system (GIS), ACPF processes topographic data for terrain in the watershed. These data can determine land and agricultural fields within a watershed that are most prone to contribute runoff to streams. Furthermore, ACPF can identify where in-field and edge-of-field practices could be installed throughout the watershed. Such practices include surface intake filters, restored wetland, grassed waterways, buffer strips, water and sediment control basins (WASCOBs), bioreactors, saturated buffers, and floodplain reconnections. The lowa Flood Center executed the ACPF for all subwatersheds in the English River Watershed as part of the Phase II planning project. That report can be found on the English River Watershed website.

POTENTIAL BEST MANAGEMENT PRACTICES

According to the ACPF results, there exists the potential for 693.60 miles of contour buffer strips, 53 bioreactors, 464 WASCOBs, 14 nutrient-removal wetlands, a total of 2,520 acres of drainage area for the wetlands, and 104.88 miles of grassed waterways in the Middle English River subwatershed (Table 11). If all 14 wetlands were installed in the subwatershed, roughly 8.5 percent of the subwatershed drainage area would be treated. These practices are spatially depicted in Figure 10. In order to see the map in greater detail and to locate the exact position of potential practices, access the ACPF webmap via the link on the following page. Locations for BMPs are not prioritized in this analysis. Further analysis is needed to determine which practices present the highest potential.

Actual implementation of practices in the subwatershed was also analyzed in comparison to potential practices identified by the ACPF tool. Refer to the Iowa Flood Center's full report for a complete analysis, which can be found on the English River WMA website.

Table 11. Count of Potential Best Management Practices as identified by ACPF in the ERW by subwatershed. Source: lowa Flood Center

HUC-12	Area (acres)	CBS (miles)	Bio- reactors	WASCOBs	Nutrient Removal- Wetlands	Wetland Drainage (Acres)	% of HUC-12	Grassed Waterways (miles)
301	14,836	389.52	23	255	7	1,728.87	11.7 %	35.18
302	29,845	693.60	53	464	14	2,520.01	8.5 %	104.88
401	36,075	885.55	80	826	39	8,608.98	23.8 %	313.86
402	19,076	381.94	49	245	2	348.79	1.8 %	58.52
403	26,535	579.03	65	393	5	1,156.23	4.4 %	91.17
404	19,540	328.89	36	195	5	903.01	4.6 %	137.75
405	13,007	155.69	8	113	1	226.90	1.7 %	57.89
406	12,841	79.46	27	65	0	0	0.0 %	120.80
407	12,611	107.77	20	66	1	183.03	1.5 %	28.28
408	14,193	185.31	12	89	5	1,004.06	7.1 %	43.37
501	11,016	271.67	18	246	6	1,106.28	10.0 %	101.12
502	18,411	414.42	33	444	18	3,699.51	20.1 %	148.87
503	27,397	615.76	37	451	8	1,687.15	6.2 %	190.94
504	25,728	533.86	49	291	1	158.05	0.6 %	98.27



Figure 10. ACPF Model Results for Middle English River Subwatershed. Source: Iowa Flood Center

VIEW ACPF WEBMAP FOR MIDDLE ENGLISH RIVER: http://www.englishriverwma.org/acpf

SECTION 6: URBAN ASSESSMENT

The purpose of the following assessment was to quantify stormwater runoff per catchment area and to calculate pollutant loads, which provides data that can indicate higher runoff and pollutant contributing areas or "hot spots". The analysis improves the understanding of where urban best management practices (BMPs) can provide the most benefit. These results are critical in securing grant funds and can help communities and public or private organizations better plan for utilizing limited funding.

The City of Millersburg is the only urbanized, incorporated area in the Middle English River subwatershed. English River Watershed boundaries encompass the entirety of North English.

Runoff volume and pollutant models take into account a variety of environmental and physical conditions, including land use and impervious surfaces, soil types, and slope. Modeling was provided by the University of Northern Iowa GeoInformatics Training Research Education and Extension (GeoTREE) Center.

RUNOFF VOLUME

Comprehensive watershed planning completed in 2015 identified that runoff and flooding are primary resource concerns in the Middle English River subwatershed. Figure 11 represents the stormwater runoff volume for each catchment area within the city limits of Millersburg where orange and red portray higher runoff volumes. These "hot spots" would be suitable locations for BMPs that capture and retain water. The lowa Stormwater Management Manual (ISWMM), a guide for the design and installation of stormwater BMPs in urban and rural areas, recommends wet ponds, wetlands, and infiltration basins for the purpose of water retention and flood control.

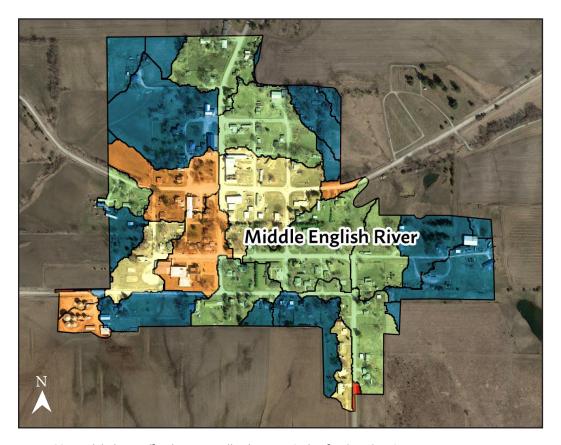
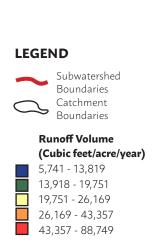



Figure 11. Modeled Runoff Volume in Millersburg, IA (cubic feet/acre/year). Source: UNI GeoTREE

NITRATE, PHOSPHORUS, AND SEDIMENT LOADING

Urbanization increases the amount of impermeable surfaces in a watershed. Rainfall can carry contaminants over urban areas, into storm sewer system, and consequently into waterbodies. Nitrogen, phosphorus, and sediment are of primary concern if they exceed natural levels in streams and rivers, and are the principal contaminants prioritized by the Iowa Nutrient Reduction Strategy (NRS).

Figures 12 displays total nitrate loads for each catchment area within the city limits of Millersburg where darker shades of red portray higher loads. These "hot spots" would be suitable locations for structural BMPs such as porous paver systems, bioretention areas, and infiltrating trenches. According to the ISWMM, these practices are proven to provide total nitrogen reductions between 60 and 80 percent.

Figures 13 and 14 display total phosphorus loads and total sediment loads for each catchment area within the city limits of Millersburg where darker shades of red portray higher loads. These "hot spots" would be suitable locations for best management practices such as bioswales or rain gardens.

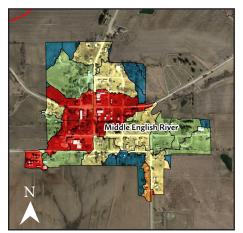


Figure 12. Modeled Nitrate Load in Millersburg, IA (cubic feet/acre/year). Source: UNI GeoTRFF

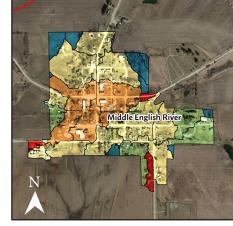


Figure 13. Modeled Phosphorus Load in Millersburg, IA (cubic feet/acre/year). Source: UNI GeoTREE

Total Phosphorus Load (lbs/acre/year)

Figure 14. Modeled Sediment Load in Millersburg, IA (cubic feet/acre/year). Source: UNI GeoTREE

Total Nitrate Load (lbs/acre/year)

0.000 - 0.201 0.201 - 0.331 0.331 - 0.469 0.469 - 0.549 0.525 - 0.646 0.646 - 0.828

0.828 - 1.128 1.128 - 1.424

1.424 - 3.035

Total Sediment Load (lbs/acre/year)

124 - 276 276 - 376 376 - 483

> 483 - 799 799 - 3143

BMP SCENARIOS

0.549 - 2.000

These data allow for modeling the impacts of BMP introduction in various catchment areas in urban areas in the ERW. For example, a bioretention cell (roughly 21,000 square feet in area) was introduced near English Valley's High School to gauge the potential impacts of this practice. The results of modeling suggest implementation of this practice would result in a 81.1 percent reduction in runoff and a 79.6 percent reduction in particulate solids in the catchment area. This scenario is hypothetical and likely would not represent actual implementation locally, but provides an example of the impact urban conservation practices can make to both runoff volume and water quality.

Please contact staff at the ERW if you are interested in having these types of scenarios completed in your watershed community. All data presented in Section 6 is available via an interactive webmap produced by the UNI GeoTree Center, and can be accessed at the link below.

VIEW MIDDLE ENGLISH RIVER INTERACTIVE WEBMAP:

https://arcg.is/obf99

SECTION 7: HAZARD MITIGATION

Hazard mitigation planning is defined as the effort to reduce loss of life and property by lessening the impact of disasters. Most counties in lowa are required to complete a county-wide Hazard Mitigation Plan, which makes the county and its cities eligible for federal funding for emergency and non-emergency disaster assistance programs. English River Watershed stakeholders identified in Phase 1 Comprehensive Planning that reducing flood severity is a priority for watershed improvement. A brief analysis of flooding hazards is included in this plan as supplemental information and support for county Hazard Mitigation Plans. The lowa County Multi-Jurisdictional Hazard Mitigation Plan was adopted in 2015 and expires in 2020.

EXTENT OF HAZARDS

As determined by the Federal Emergency Management Agency (FEMA), Figure 15 shown below represents the flood hazards that exist in the Middle English River subwatershed. The flood hazard area accounts for roughly 7.9 percent of the subwatershed area. Riverine flooding can cause damage to crops, roads, homes, and businesses when river levels rise and overflow their banks. Urban areas, such as the city of Millersburg, are also subject to impacts from flash flooding, or flooding that develops within 6 hours of the immediate storm.

Tables 12 and 13 show previous flooding events in the county from 2008 to present (August 2018) and public assistance costs per flood event. Not all assistance costs were incurred directly within the subwatershed because data is only available on the county level. The subwatershed covers about 8 percent of lowa County's area. By contrast, the English River Watershed overlaps about 58 percent of lowa County. Figures presented are not exhaustive; many flash flood events do not meet the threshold to trigger public assistance.

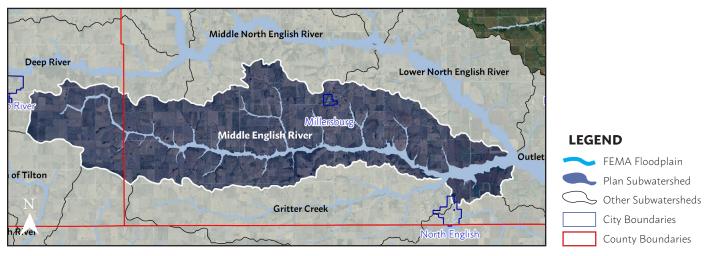


Figure 15. Flood hazard boundary areas for Gritter Creek Subwatershed. Source: FEMA

Table 13. 10-Year Disaster Assistance Funding by Flood Event in Iowa County. Source: Iowa Homeland Security & Emergency Management (HSEM)

Type of Work in Iowa County. Source: HSEM

Type of Work Assistance Costs

Roads/Culverts \$1,694,636.89

Debris Removal \$28,080.32

Emergency Procedures \$217,482.02

Total \$1,940,199.23

Table 12. 10-Year Disaster Assistance Funding by

Flood Event Period	Assistance Cost	Flood Height at English River Gauge in Parnell
May 25 – August 13, 2008	\$ 1,350,745.51	No historic data available
June 1 – August 31, 2010	\$ 140,890.92	No historic data available
April 17 – April 30, 2013	\$ 65,639.99	No historic data available
May 19 – June 1, 2013	\$ 123,608.19	No historic data available
June 26 – July 8, 2014	\$ 259,314.62	No historic data available
Total	\$ 1,940,199.23	

POTENTIAL LOSSES

Hazards United States (HAZUS) is a nationally-applicable, standardized method for estimating potential losses from floods and other hazards. Table 14 provides estimations of building and content damage from various flooding events in ERW counties. There exists 0 structures vulnerable to losses from the 1 percent annual chance flood (red dots) and 3 structure vulnerable to the 0.2 percent annual chance flood (green dots) in the subwatershed (Figure 16).

Table 14. Estimated Losses from Flood Hazards by County in the ERW. Source: HSEM

County	Building Count	Estimated Building Cost	Estimated Content Cost	Estimated Building Damage				
	Average Annual Loss Vulnerability							
lowa	20	\$1,374,100.00	\$1,000,000.00	\$2,921.00	\$1,379.00	\$4,300.00		
Poweshiek	5	\$407,220.00	\$203,610.00	\$5,274.00	\$2,563.00	\$7,837.00		
Keokuk	2	\$11,620.00	\$5,810.00	\$484.00	\$268.00	\$752.00		
	100-Year Loss Vulnerability (1% Annual Chance Flood)							
lowa	10	\$1,002,150.00	\$814,025.00	\$82,248.00	\$35,149.00	\$117,397.00		
Poweshiek	4	\$372,360.00	\$186,180.00	\$60,882.00	\$34,394.00	\$95,276.00		
Keokuk	2	\$11,620.00	\$5,810.00	\$5,653.00	\$3,117.00	\$8,770.00		
500-Year Loss Vulnerability (0.2% Annual Chance Flood)								
lowa	20	\$1,374,100.00	\$1,000,000.00	\$183,065.00	\$100,204.00	\$283,269.00		
Poweshiek	5	\$407,220.00	\$203,610.00	\$83,011.00	\$50,406.00	\$133,417.00		
Keokuk	2	\$11,620.00	\$5,810.00	\$5,997.00	\$3,289.00	\$9,286.00		

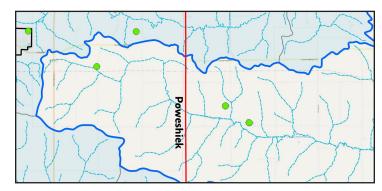


Figure 16. Vulnerable structure(s) for flood hazards in the Middle English River Subwatershed. Source: HSEM

VIEW INTERACTIVE HAZUS DATA:

http://www.englishriverwma.org/hazus

The National Flood Insurance Program (NFIP) is a federal program that provides flood insurance for residential and commercial landowners in participating communities and counties (Table 15).

VIEW MILLERSBURG NFIP FLOOD MAP:

Table 15. City or County Participation in NFIP. Source: FEMA

Municipality/Entity	Participation in NFIP
Grinnell	Yes
Guernsey	Yes
Montezuma	Yes
Webster	Yes
Kinross	Yes
Johnson County	Yes
Keokuk County	Yes
Iowa County	Yes
Poweshiek County	Yes
Barnes City	No
Deep River	No
Gibson	No
Keswick	No
Millersburg	No
Parnell	No
North English	No

SECTION 8: ACTION PLAN

This plan is intended to serve as a guide in decision-making and planning by the ERW, local agencies, local government, and citizens. Mitigation actions stated in this section are the result of data obtained through the Phase 2 planning process, the 2018 Conservation Survey, and other stakeholder input. The priority mitigation actions should be reevaluated at least every 5 years and adjusted as necessary to keep pace with accomplished projects, current policies and practice, and availability of funding. Sections 2 through 7 of this plan present social and environmental conditions present in the subwatershed. Table 16 shown below highlights the key findings from each assessment.

Table 16. Key Findings. Source: ERW

Section	Topic	Key Finding
2	Conservation Survey	The top five practices watershed landowners are willing to try with 75 percent cost share are cover crops, grassed waterways, terraces, farm ponds, and CRP.
2	Conservation Survey	Landowners are most familiar with the mission of the NRCS and report receiving the most information about conservation from the NRCS.
2	Conservation Survey	Landowners are fairly unclear which conservation organization to approach if they are interested in applying for cost share.
2	Conservation Survey	Landowners cite the cost of conservation practices as the most pressing barrier to implementation, followed by too much state or federal regulations attached to cost share programs.
3	Water Quality	The subwatershed second among all subwatersheds for its seasonal average for E.Coli Bacteria contamination.
3	Water Quality	The subwatershed ranked in the top five subwatersheds for Total Phosphorus seasonal averages.
4	Runoff & Soil Erosion	Average monthly runoff in the subwatershed is above the average for all ERW subwatersheds at 0.51 inches per month.
4	Runoff & Soil Erosion	The subwatershed's average soil delivery from 2008 through 2016 is greater than the statewide average and greater than the average for all ERW subwatersheds.
4	Runoff & Soil Erosion	Sheet and rill erosion is occuring at the largest rate in the eastern area of the subwatershed, which is northwest of the outlet of the Middle English River.
5	ACPF	The south central region of the subwatershed is not suitable for many conservation practices, while suitable locations for practices are ample in the western headwaters of the subwatershed.
6	Urban Assessment	Best management practices located in urban areas should be focused to the western residential areas of Millersburg and along 249th Street.
7	Hazard Mitigation & Flooding	Flood damages to structures in the subwatershed are low; only 3 structures located in the headwaters of the subwatershed are vulnerable to the 0.2 annual chance flood event.
7	Hazard Mitigation & Flooding	The 1 percent annual chance flood area in the subwatershed presents the greatest risk near the convergence of the North English River and the English River.

ACTION STEPS

Based upon the key findings in the Middle English River subwatershed, high and low priority actions are displayed in Table 17. Action steps were determined by comparing all subwatersheds for primary resource concerns identified in Phase 1 planning. Digital maps as displayed in this plan can be utilized to locate potential BMP locations for action items categorized as "high".

Table 17. Action Steps. Source: ERW

Priority	Action Step
High	Improve communication of the types of technical or financial assistance available to landowners by specific conservation organizations (refer to Table 17)
High	Improve communication of the mission and purpose of the organization across digital and print formats, and at events.
High	Continue monitoring water quality parameters at the subwatershed level.
Low	Target rural locations in the subwatershed where BMPs that reduce ortho-phosphorus loading can be installed in the subwatershed (refer to ACPF and Urban Assessments).
High	Target urban and rural locations in the subwatershed where BMPs that reduce total phosphorus loading can be installed in the subwatershed (refer to ACPF and Urban Assessments).
Low	Target urban and rural locations in the subwatershed suitable for BMPs that reduce nitrate loading can be installed in the subwatershed (refer to ACPF and Urban Assessments).
High	Target rural locations in the subwatershed suitable for BMPs such as wetland treatment systems, detention and retention ponds, biofiltration, or livestock and manure management practices (refer to ACPF Assessment).
High	Target rural locations in the subwatershed where sheet and rill erosion rates are high and promote BMPs that reduce erosion (refer to ACPF Assessment).
High	Target rural locations in the subwatershed where sediment delivery rates are high and promote BMPs that reduce sediment delivery (refer to ACPF Assessment).
Low	Consider temporary or permanent flood protection procedures for the vulnerable structure itself or land use practices upstream of the property.
High	Increase the organizational capacity of the English River WMA to support conservation groups serving landowners in the subwatershed.

FUNDING SOURCES

Mitigation actions can be financially supported through a variety of state and federal programs (Table 18). Funding for conservation practices can also be supported through private sources such as the McKnight Foundation, Trees Forever, National Fish and Wildlife Foundation, Healthy Watersheds Consortium Grants, and the Walton Foundation.

Table 18. State and Federal Conservation Programs. Source: ERW

Program	Eligible Applicants	Website	Description
Hazard Mitigation Grant Program (HMGP)	IN, SA, NP, MU, CO	https://bit.ly/2wiKqq7	Funding for projects stated in Hazard Mitigation plans
Pre-Disaster Mitigation Program (PDM)	SA, MU, CO	https://bit.ly/2wiKqq7	Funding for projects stated in Hazard Mitigation plans
Iowa Watershed Approach (IWA)	IN, MU, CO, NP	https://bit.ly/2P7ibSi	Limited 90% cost share for structural nutrient reduction practices
Water Quality Initiative (WQI)	SWCD, CO, CB, MU, NP, WU, WMA	https://bit.ly/2BSCjWG	Funding for projects in priority watersheds
EPA 319 Non-Point Source Program	WMA, SWCD	https://bit.ly/2BTXTtS	Technical assistance, financial assistance, or demonstration projects
Water Quality Protection Practices	SWCD	https://bit.ly/2TsRdHD	Funding for preventing off-site sediment, nutrient and livestock waste pollution problems
lowa Financial Incentives Program (IFIP)	SWCD	https://bit.ly/2sSIVOC	State cost share for temporary or permanent practices
IDALS No-Interest Loans	SWCD	https://bit.ly/2sXRIgV	Construction of permanent soil conservation practices
Iowa Watershed Protection Program (WSPF)	SWCD	https://bit.ly/2HGZ5DO	Technical assistance, training on watershed development, implementation assistance
Soil and Water Enhancement Account – REAP Water Quality Improvement Projects	IN, SWCD	https://bit.ly/2DJrTr8	Funding to protect surface and ground water resources from point and non-point sources
Integrated Farm and Livestock Management Demonstration Program (IFLM)	IN, SCWD	https://bit.ly/2HFIY9r	Program demonstrating land use management techniques and implications
General Signup Conservation Reserve Program (CRP)	IN	https://bit.ly/1n6goil	Land conservation program enrolling environmentall sensitive land in conservation cover
Environmental Quality Incentives Program (EQIP)	IN	https://bit.ly/2gofEG9	Financial resources to plan and implement conservation projects
Emergency Watershed Protection Program (EWP)	IN, MU, SA	https://bit.ly/2mL89bn	Funding to relieve imminent natural hazards in a watershed
IDNR Watershed Improvement Grants	WMA, MU, CO	https://bit.ly/2ssYBqq	Funding for creation of 9-step watershed plans
Iowa Water Quality Loan Fund (SRF)	IN, MU, CO, NP	https://bit.ly/2HENtB2	Low interest loan program for funding stormwater, waste water improvements
Volunteer Water Monitoring	IN, WMA, SWCD	https://bit.ly/2MHKvdX	Volunteer program for training and collection of water quality samples
Resource Enhancement and Protection Program (REAP)	IN, MU, CO, SWCD	https://bit.ly/2Ga425C	Invests in Iowa's natural and cultural resources

IN = Individuals/Landowners

SA = State Agencies

NP = Non-Profit Organizations

MU = Municipalities

CO = Counties

CB = Conservation Boards

SWCD = Soil and Water Conservation Districts

WMA = Watershed Management Authorities

ACRONYMS

ACPF	Agriculture Conservation Planning Framework	ISWMM	Iowa Stormwater Management Manual
BMP	Best Management Practice	IWA	Iowa Watershed Approach
DEP	Daily Erosion Project	NFIP	National Flood Insurance Program
EPA	Environmental Protection Agency	NRCS	Natural Resource Conservation Service
ERW	English River Watershed	NRS	Nutrient Reduction Strategy
FEMA	Federal Emergency Management Agency	SCS-CN	Soil Conservation Service - Curve Number
HSEM	Homeland Security & Emergency Management	SWCD	Soil & Water Conservation District
HUC	Hydrologic Unit Code	WMA	Watershed Management Authority

ACKNOWLEDGEMENTS

This report is one of fourteen subwatershed plans developed as part of Phase 2 planning in the English River Watershed. These plans would not have been possible without the hardwork by the lowa Flood Center and their participation in the National Disaster Resiliency program, a federal grant administered by the Housing and Urban Development department. The following a list of project partners that were instrumental in providing data, technical assistance, and support through the planning process.

The Iowa

The Iowa Flood Center

Iowa County, Iowa

The University of Northern Iowa's GeoTREE Center

Department of Natural Resources

Iowa Homeland Security & Emergency Management

Erosion Project

THE UNIVERSE Education Center for Evaluation

Iowa Department of Agriculture & Land Stewardship

Eldon C. Stutsman, Inc.

Center for Evaluation and Assessment

College of

The State Hygenic Laboratory

CONTACT INFORMATION

All of the data, assessments, and tools highlighted in this plan are available to the public. Please contact staff at the English River Watershed to discuss how we can assist you in conservation planning and implementation.

The English River Watershed organization operates out of the Kalona City Hall offices. Our team is available by email, phone, or via our website: (http://englishriverwma.org/contact).

Jody Bailey, Watershed Coordinator jbailey@englishriverwma.org (319) 656-2310 511 C Avenue, Kalona IA, 52247